
1 
 

flat assembler g User Manual 
 

Contents 
0. Executing the Assembler ............................................................................................................... 1 

1. Fundamental Syntax Rules ........................................................................................................... 2 

2. Symbol Identifiers ............................................................................................................................ 2 

3. Basic Symbol Definitions ................................................................................................................ 6 

4. Expression Values ............................................................................................................................. 8 

5. Symbol Classes ................................................................................................................................ 10 

6. Generating Data .............................................................................................................................. 11 

7. Conditional Assembly .................................................................................................................... 12 

8. Macroinstructions ............................................................................................................................ 14 

9. Labeled Macroinstructions ........................................................................................................... 18 

10. Symbolic Variables ....................................................................................................................... 19 

11. Repeating Blocks of Instructions ............................................................................................ 21 

12. Matching Parameters .................................................................................................................. 25 

13. Output Areas .................................................................................................................................. 28 

14. Other Instructions ........................................................................................................................ 32 

 

This document describes the syntax of flat assembler g language, with basic examples. It was written 

with an assumption that it would be read sequentially and at any moment it uses only the concepts and 

constructions that have been introduced earlier. However, it should be possible to jump right to the 

section that interests the reader, and then go back to earlier parts only when it is needed in order to 

better understand the later ones.  

0. Executing the Assembler 
To start assembly from the command line it is necessary to provide at least one parameter, the name of 

a source file, and optionally a second one - name of the destination file. If the assembly is successful, the 

generated output is written into the destination and a short summary is displayed, otherwise an 

information about errors is shown. The maximum number of presented errors can be controlled with an 

additional "-e" switch (by default no more than one error is presented). The "-p" switch controls the 

maximum number of passes the assembler is going to attempt. This limit is by default set to 100. The "-

r" switch allows to set up the limit of the recursion stack, that is the maximum allowed depth of entering 

macroinstructions and including additional source files. The "-v" switch can enable showing all the lines 

from this stack when reporting an error (by default the assembler tries to select only the lines that are 



2 
 

likely the most informative, but this simple heuristic may not always be correct). The "-i" switch allows 

to insert any command at the beginning of processed source.  

1. Fundamental Syntax Rules 
Every command in the assembly language occupies a single line of text. If a line contains the semicolon 

character, everything from that character up to the end of the line is treated as a comment and ignored 

by the assembler. The main part of a line (i.e. excluding the comment) may end with the backslash 

character and in such case the next line from the source text is going to be appended to this one. This 

allows to split any command across multiple lines, when needed. From now on we will refer to a source 

line as an entity obtained by stripping comments and joining the lines of text connected with backslash 

characters.  

The text of source line is divided into syntactical units called tokens. There is a number of special 

characters that become separate tokens all by themselves. Any of the characters listed below is such a 

syntactical unit:  

    +-/*=<>()[]{}:?!,.|&~#`\ 

Any contiguous (i.e. not broken by whitespace) sequence of characters other than the above ones 

become a single token, which can be a name or a number. The exception to this rule is when a sequence 

starts with the single or the double quote character. This defines a quoted string and it may contain any 

of the special characters, whitespace and even semicolons, as it ends only when the same character that 

was used to start it is encountered. The quotes that are used to enclose the string do not become a part 

of the string themselves. If it is needed to define a string containing the same character that is used to 

enclose it, the character needs to be doubled inside the string - only one copy of the character will 

become a part of the string, and the sequence will continue.  

Numbers are distinguished from names by the fact that they either begin with a decimal digit, or with 

the "$" character followed by any hexadecimal digit. This means that a token can be considered numeric 

even when it is not a valid number. To be a correct one it must be one of the following: a decimal 

number (optionally with the letter "d" attached at the end), a binary number followed by the letter "b", 

an octal number followed by the letter "o" or "q", or a hexadecimal number either prepended with "$" 

or "0x", or followed by the character "h". Because the first digit of a hexadecimal number can be a 

letter, it may be needed to prepend it with the digit zero in order to make it recognizable as a number. 

For example, "0Ah" is a valid number, while "Ah" is just a name.  

2. Symbol Identifiers 
Any name can become a defined symbol by having some meaning (a value) assigned to it. One of the 

simplest methods of creating a symbol with a given value is to use the "=" command:  

        a = 1 

The ":" command defines a label, that is a symbol with a value equal to the current address in the 

generated output. At the beginning of the source text this address is always zero, so when the following 

two commands are the first ones in the source file, they define symbols that have identical values:  

        first: 
        second = 0 



3 
 

Labels defined with ":" command are special constructs in assembly language, since they allow any other 

command (including another label definition) to follow in the same line. This is the only kind of 

command that allows this.  

What comes before the ":" or "=" character in such definition is a symbol identifier. It can be a simple 

name, like in the above samples, but it may also contain some additional modifiers, described below.  

When a name in a symbol definition has the "?" character appended to it (with no whitespace between 

them), the symbol is case-insensitive (otherwise it would be defined as case-sensitive). This means that 

the value of such symbol may be referred to (as in an expression to the right of the "=" character) by the 

name being any variant of the original name that differs only in the case of letters. Only the cases of the 

26 letters of the English alphabet are allowed to differ, though.  

It is possible to define a case-sensitive symbol that clashes with a case-insensitive one. Then the case-

sensitive symbol takes precedence and the more general one is used only when corresponding case-

sensitive symbol is not defined. This can be remedied by using the "?" modifier, since it always means 

that the name followed by it refers to the case-insensitive symbol.  

        tester? = 0 
        tester = 1 
        TESTER = 2 
        x = tester       ; x = 1 
        y = Tester       ; y = 0 
        z = TESTER       ; z = 2 
        t = tester?      ; t = 0 

Every symbol has its own namespace of descendants, called child namespace. When two names are 

connected by a dot with no whitespace in between, such identifier refers to the symbol with the second 

name in a namespace of descendants to the symbol specified by the first name. This operation can be 

repeated many times within a single identifier, allowing to refer to descendants of descendants in a 

chain of any length.  

        space: 
        space.x = 1 
        space.y = 2 
        space.color: 
        space.color.r = 0 
        space.color.g = 0 
        space.color.b = 0 

Any of the names in such chain may optionally be followed by the "?" character to mark that it refers to 

a case-insensitive symbol. If "?" is inserted in the middle of the name (effectively splitting it into 

separate tokens) such identifier is considered a syntactical error.  

When an identifier starts with a dot (in other words: when the name of the parent symbol is empty), it 

refers to the symbol in the namespace of the latest label that was defined in the current base 

namespace. This allows to rewrite the above sample like this:  

        space: 
        .x = 1 
        .y = 2 
        .color: 
        .color.r = 0 
        .color.g = 0 



4 
 

        .color.b = 0 

After the "space" label is defined, it becomes the latest label defined within the base namespace, so the 

following ".x" refers to the "space.x" symbol and then the ".color" refers to the "space.color". This 

symbol becomes the latest label defined within the child namespace of "space", but it does not affect 

the current namespace, where "space" remains the newest label.  

The "namespace" command followed by a symbol identifier changes the base namespace for a section 

of source text. It must be paired with the "end namespace" command later in the source to mark the 

end of such section. This can be used to again rewrite the above sample in a different way:  

        space: 
        namespace space 
                x = 1 
                y = 2 
                color: 
                .r = 0 
                .g = 0 
                .b = 0 
        end namespace 

When a name is not preceded by a dot, and as such it does not have explicitly specified in what 

namespace the symbol resides, the assembler looks for defined symbol in the current namespace, and if 

none is found, in the consecutive namespaces of parent symbols, starting from the namespace 

containing the parent symbol of current namespace. If no defined symbol with such name is found, it is 

assumed that the name refers to the symbol in the current namespace (and unless there is "?" character 

after such name, it is assumed that the symbol is case-sensitive). A definition that does not specify the 

namespace where the new symbol should be created, always makes the new symbol in the current base 

namespace.  

        global = 0 
        regional = 1 
        namespace regional 
                regional = 2            ; regional.regional = 2 
                x = global              ; regional.x = 0 
                regional.x = regional   ; regional.regional.x = 2 
                global.x = global       ; global.x = 0 
        end namespace 

The comments in the above sample show the equivalent definitions with respect to the original base 

namespace. Note that when a name is used to specify the namespace, the assembler looks for a defined 

symbol with such name to lookup in its namespace, but when it is a name of a symbol to be defined, it is 

always created within the current base namespace.  

When the final dot of an identifier is not followed by any name, it refers to the parent symbol of the 

namespace that would be searched for a symbol if there was a name after this dot. Adding such dot at 

the end of an identifier may appear redundant, but it can be used to alter the way the definition of a 

symbol works, because it forces the assembler to look for an already existing symbol that it can alter 

instead of squarely creating a new one in the current namespace. For instance, if in the fourth line of the 

previous example "regional." was put in place of "regional", it would define a new value for the original 

"regional" symbol instead of making a new symbol in the child namespace. Similarly, a definition formed 

this way may assign a new value to a symbol regardless of whether it was previously defined as case-

insensitive or not.  



5 
 

If an identifier is just a single dot, by the above rules it refers to the latest label defined in the current 

base namespace. This can be applied to rewrite the earlier example in yet another way:  

        space: 
        namespace . 
                x = 1 
                y = 2 
                color: 
                namespace . 
                        r = 0 
                        g = 0 
                        b = 0 
                end namespace 
        end namespace 

It also demonstrates how namespace sections can be nested one within another.  

The "#" may be inserted anywhere inside an identifier without changing its meaning. When "#" is the 

only character separating two name tokens, it causes them to be interpreted as a single name formed by 

concatenating the tokens.  

        variable = 1 
        varia#ble = var#iable + 2       ; variable = 3 

This can also be applied to numbers.  

There is a couple of additional rules concerning the use of dots in identifiers. When an identifier starts 

with a dot, but there has been no label defined in the current base namespace, the identifier refers to 

the descendant of a special symbol that resides in the current namespace but has no name. If an 

identifier starts with a sequence of two or more dots, the identifier refers to the descendant of a similar 

unnamed symbol, but it is a distinct one for any given number of dots. While the namespace accessed 

with a single starting dot changes every time a new label is defined within the current namespace, the 

special namespace accessed with two or more dots in the beginning of an identifier remains the same 

everywhere within the current base namespace:  

        first: 
                .child = 1 
                ..other = 0 
        second: 
                .child = 2 
                ..another = ..other 

In this example the meaning of the ".child" identifier changes from place to place, but the "..other" 

identifier means the same everywhere.  

When two names inside an identifier are connected with a sequence of two or more dots, the identifier 

refers to the descendant of such special unnamed symbol in the namespace specified by the identifier 

before that sequence of dots. The unnamed child namespace is chosen depending on a number of dots 

and in this case the number of required dots is increased by one. The following example demonstrates 

the two methods of identifying such symbol:  

        namespace base 
                ..other = 1 
        end namespace 
 
        result = base.#..other 



6 
 

The "#" character has been inserted into the last identifier for a better readability, but the plain 

sequence of three dots would do the same.  

The unnamed symbol that hosts a special namespace can itself be accessed when an identifier ends with 

a sequence of two or more dots - thanks to the rule that an identifier which ends in a dot refers to the 

parent symbol of the namespace that would be accessed if there was a name after this dot. So in the 

context of the previous example the "base..." (or "base.#..") would refer to the unnamed parent of the 

namespace where the "other" symbol resides, and it would be the same symbol as identified by simple 

".." inside the namespace of the "base" symbol.  

Any identifier can be prepended with a "?" character and such modifier gives an added effect only when 

it is used in a context where identifier can be interpreted either as an instruction or as a label or variable 

to be defined. In such case identifier starting with "?" is never going to be treated as an instruction. This 

can be used to define a variable that shares a name with an existing command:  

        ?restore = 0 

A number can be used in a role of a name inside an identifier, but not when it is placed at the beginning, 

because then it is considered a literal value. This restriction also may be bypassed by prepending an 

identifier with "?".  

3. Basic Symbol Definitions 
When a symbol is defined as a label, it must be the only definition of this symbol in the entire source. A 

value that is in this way assigned to the symbol can be accessed from every place in the source, even 

before the label is actually defined. When a symbol is used before it is defined (this is often called 

forward-referencing) the assembler tries to correctly predict the value of the symbol by doing multiple 

passes over the source text. Only when all predictions prove to be correct, the assembler generates the 

final output.  

This kind of symbols, which can only be defined once and thus have a universal value that can always be 

forward-referenced, is called a constant symbol. All labels are constants.  

When a symbol is defined with a "=" command, it may have multiple definitions of this kind. Such 

symbol is called variable and when it is used, the value from its latest definition is accessed. A symbol 

defined with such command can also be forward-referenced, but only when it is defined exactly once in 

the entire source and as such has a single unambiguous value.  

        a = 1           ; a = 1 
        a = a + 1       ; a = 2 
        a = b + 1       ; a = 3 
        b = 2 

A special case of forward-referencing is self-referencing, when the value of a symbol is used in its own 

definition. The assembly of such construct is successful only when the assembler is able to find a value 

that is stable under such evaluation, effectively solving an equation. But due to the simplicity of the 

resolving algorithm based on predictions a solution may not be found even when it exists.  

        x = (x-1)*(x+2)/2-2*(x+1)       ; x = 6 or x = -1 



7 
 

The ":=" defines a constant value. It may be used instead of "=" to ensure that the given symbol is 

defined exactly once and that it can be forward-referenced.  

The "=:" defines a variable symbol like "=", but it differs in how it treats the previous value (when such 

exists). While "=" discards the previous value, "=:" preserves it so it can later be brought back with the 

"restore" command:  

        a = 1 
        a =: 2          ; preserves a = 1 
        a = 3           ; discards a = 2 and replaces it with a = 3 
        restore a       ; brings back a = 1 

The "restore" may be followed by multiple symbol identifiers separated with commas, and it discards 

the latest definition of every one of them. It is not considered an error to use "restore" with a symbol 

that has no active definition (either because it was never defined or because all of its definitions were 

already discarded earlier). If a symbol is treated with the "restore" command, it can never be forward-

referenced - for this reason "restore" cannot be applied to constants.  

The "label" keyword followed by a symbol identifier is an alternative way of defining a label. In this basic 

form it is equivalent to a definition made with ":", but it occupies an entire line. However, with this 

command it is possible to provide more settings for the defined label. The identifier may be optionally 

followed by the ":" token and then an additional value to be associated with this label (usually denoting 

the size of the labeled entity). The assembler has a number of built-in constants defining various sizes 

for this purpose, but this value can also be provided as a plain number.  

        label character:byte 
        label char:1 

The ":" character may be omitted in favor of a plain whitespace, but it is recommended for clarity. After 

an identifier and an optional size, the "at" keyword may follow and then a value that should be assigned 

to the label instead of the current address.  

        label wchar:word at char 

The built-in size constants are equivalent to the following set of definitions:  

        byte? = 1       ; 8 bits 
        word? = 2       ; 16 bits 
        dword? = 4      ; 32 bits 
        fword? = 6      ; 48 bits 
        pword? = 6      ; 48 bits 
        qword? = 8      ; 64 bits 
        tbyte? = 10     ; 80 bits 
        tword? = 10     ; 80 bits 
        dqword? = 16    ; 128 bits 
        xword? = 16     ; 128 bits 
        qqword? = 32    ; 256 bits 
        yword? = 32     ; 256 bits 
        dqqword? = 64   ; 512 bits 
        zword? = 64     ; 512 bits 

The "element" keyword followed by a symbol identifier defines a special constant that has no fixed 

value and can be used as a variable in the linear polynomials. The identifier may be optionally followed 

by the ":" token and then a value to be associated with this symbol, called metadata of the element.  

        element A 



8 
 

        element B:1 

The metadata assigned to a symbol can be extracted with a special operator, defined in the next section.  

4. Expression Values 
In every construction described so far where a value of some kind was provided, like after the "=" 

command or after the "at" keyword, it could be a literal value (a number or a quoted string) or a symbol 

identifier. A value can also be specified through an expression containing built-in operators.  

The "+", "-" and "*" perform standard arithmetic operations on integers ("+" and "-" can also be used in 

a unary form - with only one argument). "/" and "mod" perform division with remainder, giving a 

quotient or a remainder respectively. Of these arithmetic operators, "mod" has the highest precedence 

(it is calculated first), "*" and "/" come next, while "+" and "-" are evaluated last (even in their unary 

variants). Operators with the same precedence are evaluated from left to right. Parentheses can be used 

to enclose sub-expressions when a different order of operations is required.  

The "xor", "and" and "or" perform bitwise operations on numbers. "xor" is addition of bits (exclusive or), 

"and" is multiplication of bits, and "or" is inclusive or (logical disjunction). These operators have higher 

precedence than any arithmetic operators.  

The "shl" and "shr" perform bit-shifting of the first argument by the amount of bits specified by the 

second one. "shl" shifts bits left (towards the higher powers of two), while "shr" shifts bits right (towards 

zero), dropping bits that fall into the fractional range. These operators have higher precedence than 

other binary bitwise operations.  

The "not", "bsf" and "bsr" are unary operators with even higher precedence. "not" inverts all the bits of 

a number, while "bsf" and "bsr" search for the lowest or highest set bit respectively, and give the index 

of that bit as a result.  

All the operations on numbers are performed as if they were done on the infinite 2-adic representations 

of those numbers. For example, the "bsr" with a negative number as an argument gives no valid result, 

since such number has an infinite chain of set bits extending towards infinity and as such contains no 

highest set bit (this is signaled as an error).  

The "bswap" operator allows to create a string of bytes containing the representation of a number in a 

reverse byte order (big endian). The second argument to this operator should be the length in bytes of 

the required string. This operator has the same precedence as the "shl" and "shr" operators.  

When a string value is used as an argument to any of the operations on numbers, it is treated as a 

sequence of bits and automatically converted into a positive number (extended with zero bits towards 

the infinity). The consecutive characters of a string correspond to the higher and higher bits of a 

number.  

To convert a number back to a string, the "string" unary operator may be used. This operator has the 

lowest possible precedence, so when it precedes an expression, all of it is evaluated prior to the 

conversion. When conversion in the opposite direction is needed, simple unary "+" is enough to make a 

string become a number.  



9 
 

The length of a string may be obtained with the "lengthof" unary operator. This operator can only be 

applied to a string and it is one of the operators with the highest precedence.  

When a symbol defined with the "element" command is used in an expression the result may be a linear 

polynomial in a variable represented by the symbol. Only simple arithmetic operations are allowed on 

the terms of a polynomial, and it must stay linear - so, for example, it is only allowed to multiply a 

polynomial by a number, but not by another polynomial.  

There are a few operators with high precedence that allow to extract the information about the terms of 

linear polynomial. The polynomial should come as the first argument, and the index of the term as the 

second one. The "element" operator extracts the variable of a polynomial term (with the coefficient of 

one), the "scale" operator extracts the coefficient (a number by which the variable is multiplied) and 

"metadata" operator gives back the metadata associated with the variable.  

When the second argument is an index higher than the index of the last term of the polynomial, all three 

operators return zero. When the second argument is zero, "element" and "scale" give information about 

the constant term - "element" returns numeric 1 and "scale" returns the value of the constant term.  

        element A 
        linpoly = A + A + 3 
        vterm = linpoly scale 1 * linpoly element 1     ; vterm = 2 * A 
        cterm = linpoly scale 0 * linpoly element 0     ; cterm = 3 * 1 

The "metadata" operator with an index of zero returns the size that is associated with the first 

argument. This value is definite only when the first argument is a symbol that has a size associated with 

it (or an arithmetic expression that contains such symbol), otherwise it is zero. There exists an additional 

unary operator "sizeof", which gives the same value as "metadata 0".  

        label table : 256 
        length = sizeof table   ; length = 256 

The "elementof", "scaleof" and "metadataof" are variants of "element", "scale" and "metadata" 

operators with the opposite order of arguments. Therefore when "sizeof" is used in an expression it is 

equivalent to writing "0 metadataof" in its place. These operators have even higher precendence than 

their counterparts and are right-associative.  

The order of the terms of the linear polynomial depends on the way in which the value was constructed. 

Every arithmetic operation preserves the order of the terms in the first argument, and the terms that 

were not present in the first argument are attached at the end in the same order in which they occurred 

in the second argument. This order only matters when extracting terms with appropriate operators.  

The "elementsof" is another unary operator of the highest precedence, it counts the number of variable 

terms of a linear polynomial.  

An expression may also contain a literal value that defines a floating-point number. Such number must 

be in decimal notation, it may contain "." character as a decimal mark and may be followed by the "e" 

character and then a decimal value of the exponent (optionally preceded by "+" or "-" to mark the sign 

of exponent). When "." or "e" is present, it must be followed by at least one digit. The "f" character can 

be appended at the end of such literal value. If a number contains neither "." nor "e", the final "f" is the 

only way to ensure that it is treated as floating-point and not as a simple decimal integer.  



10 
 

The floating-point numbers are handled by the assembler in the binary form. Their range and precision 

are at least as high as they are in the longest floating-point format that the assembler is able to produce 

in the output.  

Basic arithmetic operations are allowed to have a floating-point number as any of the arguments, but 

none of the arguments may contain a non-scalar (linear polynomial) terms then. The result of such 

operation is always a floating-point number.  

The unary "float" operator may be used to convert an integer value to floating-point. This operator has 

the highest precedence.  

The "trunc" is another unary operator with the highest precedence and it can be applied to floating-

point numbers. It extracts the integer part of a number (it is a truncation toward zero) and the result is 

always a plain integer, not a floating-point number. If the argument was already a plain integer, this 

operation leaves it unchanged.  

The "bsr" operator can be applied to floating-point numbers and it returns the exponent of such 

number, which is the exponent of the largest power of two that is not larger than the given number. The 

sign of the floating-point value does not affect the result of this operation.  

It is also allowed to use a floating-point number as the first argument to the "shl" and "shr" operators. 

The number is then multiplied or divided by the power of two specified by the second argument.  

5. Symbol Classes 
There are three distinct classes of symbols determining the position in source line at which the symbol 

may be recognized. A symbol belonging to the instruction class is recognized only when it is the first 

identifier of the command, while a symbol from the expression class is recognized only when used to 

provide a value of arguments to some command.  

All the types of definitions that were described in the earlier sections create the expression class 

symbols. The "label" and "restore" are the examples of built-in symbols belonging to the instruction 

class.  

In any namespace it is allowed for symbols of different classes to share the same name, for example it is 

possible to define the instruction named "shl", while there is also an operator with the same name - but 

an operator belongs to the expression class. It is however recommended to avoid name clashes of this 

kind. An existing instruction may actually prevent definition of a symbol with the same name using a 

command like "=", because such definition requires the name to be the first identifier in command, and 

then it would be automatically interpreted as an instruction.  

The third class of symbols is the labeled instructions. A symbol belonging to this class may be recognized 

only when the first identifier of the command is not an instruction - in such case the first identifier 

becomes a label to the instruction defined by the second one. If we treat "=" as a special kind of 

identifier, it may serve as an example of labeled instruction.  

The rules concerning namespace apply equally to the symbols of all classes, for example symbol of 

instruction class belonging to the child namespace of latest label can be executed by preceding its name 

with dot. It should be noted, however, that when a namespace is specified through its parent symbol, it 



11 
 

is always a symbol belonging to the expression class. It is not possible to refer to a child namespace of 

an instruction, only to the namespace belonging to the expression class symbol with the same name.  

The assembler contains built-in symbols of all classes. Their names are always case-insensitive and they 

may be redefined, but it is not possible to remove them. When all the values of such symbol are 

removed with a command like "restore", the built-in value persists.  

6. Generating Data 
The "db" instruction allows to generate bytes of data and put them into the output. It should be 

followed by one or more values, separated with commas. When the value is numeric, it defines a single 

byte. When the value is a string, it puts the string of bytes into output.  

        db 'Hello',13,10        ; generate 7 bytes 

The "dup" keyword may be used to generate the same value multiple times. The "dup" should be 

preceded by numeric expression defining the number of repetitions, and the value to be repeated 

should follow. A sequence of values may also be duplicated this way, in such case "dup" should be 

followed by the entire sequence enclosed in parentheses (with values separated with commas).  

        db 4 dup 90h            ; generate 4 bytes 
        db 2 dup ('abc',10)     ; generate 8 bytes 

When a special identifier consisting of a lone "?" character is used as a value in the arguments to "db", it 

reserves a single byte. This advances the address in the output where the next data are going to be put, 

but the reserved bytes are not generated themselves unless they are followed by some other data. 

Therefore, if the bytes are reserved at the end of output, they do not increase the size of generated file. 

This kind of data is called uninitialized, while all the regular data are said to be initialized.  

The "rb" instruction reserves a number of bytes specified by its argument.  

        db ?                    ; reserve 1 byte 
        rb 7                    ; reserve 7 bytes 

Every built-in instruction that generates data (traditionally called a data directive) is paired with a 

labeled instruction of the same name. Such command in addition to generating data defines a label at 

address of generated data, with associated size equal to the size of data unit used by this instruction. In 

case of "db" and "rb" this size is 1.  

        some db sizeof some     ; generate a byte with value 1 

The "dw", "dd", "dp", "dq", "dt", "ddq", "dqq" and "ddqq" are instructions analogous to "db" with a 

different sizes of data unit. The order of bytes within a single generated unit is always little-endian. 

When a string of bytes is provided as the value to any of these instructions, the generated data is 

extended with zero bytes to the length which is the multiple of data unit. The "rw", "rd", "rp", "rq", "rt", 

"rdq", "rqq" and "rdqq" are the instructions that reserve a specified number of data units. The unit sizes 

associated with all these instructions are listed in table 1.  

The "dw", "dd", "dq", "dt" and "ddq" instructions allow floating-point numbers as data units. Any such 

number is then converted into floating-point format appropriate for a given size.  

http://flatassembler.net/docs.php?article=fasmg_manual#table1


12 
 

The "emit" (with a synonym "dbx") is a data directive that uses the size of unit specified by its first 

argument to generate data defined by the remaining ones. The size may be separated from the next 

argument with a colon instead of a comma, for better readability. When the unit size is such that it has a 

dedicated data directive, the definition made with "emit" has the same effect as if these values were 

passed to the instruction tailored for this size.  

        emit 2: 0,1000,2000      ; generate three 16-bit values 

The "file" instruction reads the data from an external file and writes it into output. The argument must 

be a string containing the path to the file, it may optionally be followed by ":" and the numeric value 

specifying an offset within the file, next it may be followed by comma and the numeric value specifying 

how many bytes to copy.  

        file 'data.bin'                 ; insert entire file 
        excerpt file 'data.bin':10h,4   ; insert selected four bytes 

Table 1 Data Directives 
Size 

(bytes) 
Generate 

data 
Reserve 

data 

1 
db 

file 
 

rb 

2 dw rw 

4 dd rd 

6 dp rp 

8 dq rq 

10 dt rt 

16 ddq rdq 

32 dqq rqq 

64 ddqq rdqq 

* emit  

7. Conditional Assembly 
The "if" instruction causes a block of source text to be assembled only under certain condition, specified 

by a logical expression that is an argument to this instruction. The "else if" command in the following 

lines ends the previous conditionally assembled block and opens a new one, assembled only when the 

previous conditions were not met and the new condition (an argument to "else if") is true. The "else" 

command ends the previous conditionally assembled block and begins a block that is assembled only 

when none of the previous conditions was true. The "end if" command should be used to end the entire 

construction. There may be many or none "else if" commands inside and no more than one "else".  

A logical expression is a distinct syntactical entity from the basic expressions that were described earlier. 

A logical expression consists of logical values connected with logical operators. The logical operators are: 

unary "~" for negation, "&" for conjunction and "|" for alternative. The negation is evaluated first, while 

"&" and "|" are simply evaluated from left to right, with no precedence over each other.  

A logical value in its simplest form may be a basic expression, it then corresponds to true condition if 

and only if its value is not constant zero. Another way to create a logical value is to compare the values 



13 
 

of two basic expressions with one of the following operators: "=" (equal), "<" (less than), ">" (greater 

than), "<=" (less or equal), ">=" (greater or equal), "<>" (not equal).  

        count = 2 
        if count > 1 
                db '0' 
                db count-1 dup ',0' 
        else if count = 1 
                db '0' 
        end if 

When linear polynomials are compared this way, the logical value is valid only when they are 

comparable, which is whey they differ in constant term only. Otherwise the condition like equality is 

neither universally true nor universally false, since it depends on the values substituted for variables, 

and assembler signals this as an error.  

The "relativeto" operator creates a logical value that is true only when the difference of compared 

values does not contain any variable terms. Therefore, it can be used to check whether two linear 

polynomials are comparable - the "relativeto" condition is true only when both compared polynomials 

have the same variable terms.  

Because logical expressions are lazily evaluated, it is possible to create a single condition that will not 

cause an error when the polynomials are not comparable, but will compare them if they are:  

        if a relativeto b & a > b 
                db a - b 
        end if 

The "eqtype" operator can also be used to compare two basic expressions, it makes a logical value which 

is true when the values of the expressions are of the same type - either both are algebraic, both are 

strings or both are floating-point numbers. An algebraic type covers the linear polynomials and it 

includes the integer values.  

The "eq" operator compares two basic expressions and creates a logical value which is true only when 

their values are of the same type and equal. This operator can be used to check whether a value is a 

certain string, a certain floating-point number or a certain linear polynomial. It can compare values that 

are not comparable with "=" operator.  

The "defined" operator creates a logical value combined with a basic expression that follows it. This 

condition is true when the expression does not contain symbols that have no accessible definition. The 

expression is only tested for the availability of its components, it does not need to have a computable 

value. This can be used to check whether a symbol of expression class has been defined, but since the 

symbol can be accessible through forward-referencing, this condition may be true even when the 

symbol is defined later in source. The basic expression that follows "defined" is also allowed to be empty 

and the condition is then trivially satisfied.  

The "used" operator forms a logical value if it is followed by a single identifier. This condition is true 

when the value of specified symbol has been used anywhere in the source.  

The "assert" is an instruction that signalizes an error when a condition specified by its argument is not 

met.  



14 
 

8. Macroinstructions 
The "macro" command allows to define a new instruction, in form of a macroinstruction. The block of 

source text between the "macro" and "end macro" command becomes the text of macroinstruction and 

this sequence of lines is assembled in place of the original command that starts with identifier of 

instruction defined this way.  

        macro null 
                db 0 
        end macro 
 
        null            ; "db 0" is assembled here 

The macroinstruction is allowed to have arguments only when the definition contains them. After the 

"macro" and the identifier of defined symbol optionally may come a list of simple names separated with 

commas, these names define the parameters of macroinstruction. When this instruction is then used, it 

may be followed by at most the same number of arguments separated with commas, and their values 

are assigned to the consecutive parameters. Before any line of text inside the macroinstruction is 

interpreted, the name tokens that correspond to any the parameters are replaced with their assigned 

values.  

        macro lower name,value 
                name = value and 0FFh 
        end macro 
 
        lower a,123h    ; a = 23h 

The value of a parameter can be any text, not necessarily a correct expression. If a line calling the 

macroinstruction contains fewer arguments than the number of defined parameters, the excess 

parameters receive the empty values.  

When the name of parameter is defined, it may be followed by "?" character to denote that it is case-

insensitive, analogously to a name in a symbol identifier. There must be no whitespace between the 

name and "?". A definition of a parameter may also be followed by "*" to denote that it requires a value 

that is not empty, or alternatively by ":" character followed by a default value, which is assigned to the 

parameter instead of an empty one when no other value is provided.  

        macro prepare name*,value:0 
                name = value 
        end macro 
 
        prepare x       ; x = 0 
        prepare y,1     ; y = 1 

If an argument to macroinstruction needs to contain a comma character, the entire argument must be 

enclosed between the "<" and ">" characters (they do not become a part of the value). If another "<" 

character is encountered inside such value, it must be balanced with corresponding ">" character inside 

the same value.  

        macro data name,value 
                name: 
                .data db value 
                .end: 
        end macro 
 



15 
 

        data example, <'abc',10> 

The last defined parameter may be followed by "&" character to denote that this parameter should be 

assigned a value containing the entire remaining part of line, even if it normally would define multiple 

arguments. Therefore, when macroinstruction has just one parameter followed by "&", the value of this 

parameter is the entire text of arguments following the instruction.  

        macro id first,rest& 
                dw first 
                db rest 
        end macro 
 
        id 2, 7,1,8 

When the name of a parameter is to be replaced with its value and it is preceded by "`" character 

(without any whitespace in between), the text of the value is embedded into a quoted string and this 

string replaces both the "`" character and the name of parameter.  

        macro text line& 
                db `line 
        end macro 
 
        text x+1        ; db 'x+1' 

The "local" is a command that may only be used inside the macroinstruction. It should be followed by 

one or more names separated with commas, and it declares that the names from this list should in 

context of current macroinstruction be interpreted as belonging to the special namespace associated 

with this macroinstruction instead of current base namespace. This allows to create some unique 

symbols every time the macroinstruction is called. Such declaration defines an additional parameter 

with the specified name and it only affects the uses of that name that follow within the same 

macroinstruction. Declaring the same name as local multiple times within the same macroinstruction 

gives no additional effect.  

        macro measured name,string 
                local top 
                name db string 
                top: name.length = top - name 
        end macro 
 
        measured hello, 'Hello!'        ; hello.length = 6 

Just like an expression symbol may be redefined and refer to its previous value in the definition of the 

new one, the macroinstructions can also be redefined, and use the previous value of this instruction 

symbol in its text:  

        macro zero 
                db 0 
        end macro 
 
        macro zero name 
                label name:byte 
                zero 
        end macro 
 
        zero x 



16 
 

And just like other symbols, a macroinstruction may be forward-referenced when it is defined exactly 

once in the entire source. Such macroinstruction may then use its own value in a recursive way, 

analogously to self-referential definition of an expression symbol.  

        macro factorial n 
                if n 
                        factorial n-1 
                        result = result * (n) 
                else 
                        result = 1 
                end if 
        end macro 

A caution should be taken when redefining the built-in instructions, since they are always case-

insensitive and if a macroinstruction is defined with the same name, but case-sensitive, it will create a 

symbol that may be forward-referenced, while overriding one of the case variants of assembly 

command. Trying to call the original instruction inside such macroinstruction may lead to infinite 

recursion. Therefore, when redefining a case-insensitive instruction, it is important to not forget the "?" 

character after the name of macroinstruction.  

The "purge" command discards the definition of a symbol just like "restore", but it does so for the 

symbol of instruction class. It behaves in the same way as "restore" in all the other aspects. A 

macroinstruction can remove its own definition with "purge".  

A macroinstruction may in turn define another macroinstruction or a number of them. The blocks 

designated by "macro" and "end macro" must be properly nested one within the other for such 

definition to be accepted by the assembler.  

        macro enum enclosing 
                counter = 0 
                macro item name 
                        name := counter 
                        counter = counter + 1 
                end macro 
                macro enclosing 
                        purge item,enclosing 
                end macro 
        end macro 
 
        enum x 
                item a 
                item b 
                item c 
        x 

When it is required that macroinstruction generates unpaired "macro" or "end macro" command, it can 

be done with special "esc" instruction. Its argument becomes a part of macroinstruction, but is not being 

taken into account when counting the nested "macro" and "end macro" pairs.  

        macro xmacro name 
                esc macro name x& 
        end macro 
 
        xmacro text 
                db `x 
        end macro 



17 
 

When an identifier of macroinstruction in its definition is followed by "!" character, it defines the 

unconditional macroinstruction. This is a special kind of instruction class symbol, which is evaluated 

even in places where the assembly is suspended - like inside the conditional block whose condition is 

false, or inside a definition of another macroinstruction. This allows to define instructions that can be 

used where otherwise a directly stated "end if" or "end macro" would be required, as in the following 

example:  

        macro proc name 
                name: 
                if used name 
        end macro 
 
        macro endp! 
                end if 
                .end: 
        end macro 
 
        proc tester 
                db ? 

        endp 

If the macroinstruction "endp" in the above sample was not defined as an unconditional one and the 

block started with "if" was being skipped, the macroinstruction would not get evaluated, and this would 

lead to an error because "end if" would be missing.  

It should be noted that "end" command executes an instruction identified by its argument in the child 

namespace of case-insensitive "end" symbol. Therefore command like "end if" could be alternatively 

invoked with an "end.if" identifier, and it is possible to override any such instruction by redefining a 

symbol in the "end?" namespace. Moreover, any instruction defined within the "end?" namespace can 

then be called with the "end" command. This slightly modified variant of the above sample puts these 

facts to use:  

        macro proc name 
                name: 
                if used name 
        end macro 
 
        macro end?.proc! 
                end if 
                .end: 
        end macro 
 
        proc tester 
                db ? 
        end proc 

A similar rule applies to the "else" command and the instructions in the "else?" namespace.  

When an identifier consisting of a lone "?" character is used as an instruction symbol in the definition of 

macroinstruction, it defines a special instruction that is then called every time a line to be assembled 

does not begin with an unconditional instruction, and the complete text of line becomes the arguments 

to this macroinstruction. This special symbol can also be defined as an unconditional instruction, and 

then it is called for every following line with no exception. This allows to completely override the 

assembly process on portions of the text. The following sample defines a macroinstruction which allows 



18 
 

to define a block of comments by skipping all the lines of text until it encounters a line with content 

equal to the argument given to "comment".  

        macro comment?! ender 
                macro ?! line& 
                        if `line = `ender 
                                purge ? 
                        end if 
                end macro 
        end macro 
 
        comment ~ 
                 Any text may follow here. 
        ~ 

9. Labeled Macroinstructions 
The "struc" command allows to define a labeled instruction, in form of a macroinstruction. Except for 

the fact that such definition must be closed with "end struc" instead of "end macro", these 

macroinstructions are defined in the same way as with "macro" command. A labeled instruction is 

evaluated when the first identifier of a command is not an instruction and the second identifier is of the 

labeled instruction class:  

        struc some 
                db 1 
        end struc 
 
        get some        ; "db 1" is assembled here 

 

Inside the labeled macroinstruction identifiers starting with dot no longer refer to the namespace of 

latest label in the current base namespace. Instead they refer to the namespace of label with which the 

instruction was labeled.  

        struc POINT 
                label . : qword 
                .x dd ? 
                .y dd ? 
        end struc 
 
        my POINT        ; defines my.x and my.y 

Note that the parent symbol, which can be referred by "." identifier, is not defined unless an appropriate 

definition is generated by the macroinstruction. In the above example it is done with the "label" 

instruction. For an easier use of this feature, other syntaxes may be defined with macroinstructions, like 

in this sample:  

        macro struct? definition& 
                struc definition 
                        label . : .%top - . 
                        namespace . 
        end macro 
 
        macro ends?! 
                                %top: 
                        end namespace 
                end struc 



19 
 

        end macro 
 
        struct POINT vx:?,vy:? 
                x dd vx 
                y dd vy 
        ends 
 
        my POINT 10,20 

Note that it is not necessary to use "esc" instruction to generate unpaired "struc" or "end struc" through 

a macroinstruction defined with "macro". In the same manner unpaired "macro" or "end macro" can 

occur freely in a definition made with "struc".  

The "restruc" command is analogous to "purge", but it operates on symbols from the class of labeled 

instructions.  

As with "macro", it is possible to use an identifier consisting of a lone "?" character with "struc". It 

defines a special labeled macroinstruction that is called every time the first symbol of a line is not 

recognized as an instruction. Everything that follows that first identifier becomes the arguments to 

labeled macroinstruction. The following sample uses this feature to catch any orphaned labels (the ones 

that are not followed by any character) and treat them as regular ones instead of causing an error. It 

achieves it by making ":" the default value for "def" parameter:  

        struc ? def::& 
                . def 
        end struc 
 
        orphan 
        regular: 
        assert orphan = regular 

This special variant does not override unconditional labeled instructions unless it is unconditional itself.  

While "." provides an efficient method of accessing the label symbol, sometimes it may be needed to 

process the actual text of the label. A special parameter can be defined for this purpose and its name 

should be inserted enclosed in parentheses before the name of labeled macroinstruction:  

        struc (name) SYMBOL 
                . db `name,0 
        end struc 
 
        test SYMBOL 

10. Symbolic Variables 
The "equ" is a built-in labeled instruction that defines symbol of expression class with a symbolic value. 

Such value can contain any text (even an empty one) and when it is used in an expression it is equivalent 

to inserting the text of its value in place of its identifier, with an effect similar to evaluation of a 

parameter of macroinstruction.  

This can lead to a different result than when a standard variable defined with "=" is used, as the 

following example demonstrates:  

        numeric = 2 + 2 
        symbolic equ 2 + 2 



20 
 

        x = numeric*3           ; x = 4*3 
        y = symbolic*3          ; y = 2 + 2*3 

While "x" is assigned the value of 12, the value of "y" is 8. This shows that the use of such symbols can 

lead to unintended interactions and therefore definitions of this type should be avoided unless really 

necessary.  

The "equ" allows redefinitions, and it preserves the previous value of symbol analogously to the "=:" 

command, so the earlier value can be brought back with "restore" instruction. To replace the symbolic 

value (analogously to how "=" overwrites the regular value) the "reequ" command should be used 

instead of "equ".  

The symbolic value, in addition to retaining the exact text it was defined with, preserves the context in 

which the symbols contained in this text are to be interpreted. Therefore, it can effectively become a 

reliable link to value of some other symbol, lasting even when it is used in a different context (this 

includes change of the base namespace or a symbol referred by a starting dot):  

        first: 
                .x = 1 
                link equ .x 
                .x = 2 
        second: 
                .x = 3 
                db link         ; db 2 

It should be noted that the same applies to the parameters of any macroinstruction. If during the 

execution of macroinstruction, the context changes, the identifiers within the text of parameter still 

refer to the same symbols as in the line that called this instruction:  

        x = 1 
        namespace x 
                x = 2 
        end namespace 
        macro prodx value 
                namespace x 
                        db value*x 
                end namespace 
        end macro 
        prodx x         ; db 1*2 

Furthermore, the parameters defined with "local" command use the same mechanism to alter the 

context in which given name is interpreted, without altering the text of the name. However, such 

modified context is not relevant if the value of parameter is inserted in a middle or at the end of a 

complex identifier, because it is the structure of an identifier that dictates how its later parts are 

interpreted and only the context for an initial part matters.  

If the text following "equ" viewed as a sequence of symbols contains any identifiers of known symbolic 

values, each of them is replaced with the text of its value before creating a new one that is defined. The 

corresponding sections of text still preserve the original context, though.  

The "define" is a regular instruction that also creates a symbolic value, but as opposed to "equ" it does 

not evaluate symbolic variables in the assigned text. It should be followed by an identifier of symbol to 

be defined and then by the text of the value.  



21 
 

The difference between "equ" and "define" is often not noticeable, because when used in final 

expression the symbolic variables are nestedly evaluated until only the usable constituents of 

expressions are left. A possible use of "define" is to create a link to another symbolic variable, like the 

following example demonstrates:  

        a equ 0* 
        x equ -a 
        define y -a 
        a equ 1* 
        db x 2          ; db -0*2 
        db y 2          ; db -1*2 

The other uses of "define" will arise in the later sections, with the introduction of other instructions that 

operate on symbolic values.  

The "define", like "equ", preserves the previous value of symbol. The "redefine" is a variant of this 

instruction that discards the earlier value, analogously to "reequ".  

Note that while symbolic variables belong to the expression class of symbols, their state cannot be 

determined with operators like "defined" or "used", because a logical expression containing such 

operators is evaluated as if every symbolic variable was replaced with the text of corresponding value. 

Therefore "defined" followed by an identifier of symbolic variable is going to be applied to the content 

of this variable, whatever it is. For example, if you create a symbolic variable which is simply a link to a 

regular symbol, the "defined" or "used" followed by the identifier of this symbolic variable is going to 

determine the status of linked symbol.  

11. Repeating Blocks of Instructions 
The "repeat" instruction allows to assemble a block of instructions multiple times, with the number of 

repetitions specified by the value of its argument. The block of instructions should be ended with "end 

repeat" command. A synonym "rept" can be used instead of "repeat".  

        a = 2 
        repeat a + 3 
                a = a + 1 
        end repeat 
        assert a = 7 

The "while" instruction causes the block of instructions to be assembled repeatedly as long as the 

condition specified by its argument is true. Its argument should be a logical expression, like an argument 

for "if" or "assert". The block should be closed with "end while" command.  

        a = 7 
        while a > 4 
                a = a - 2 
        end while 
        assert a = 3 

The "%" is a special parameter which is preprocessed inside the repeated block of instructions and is 

replaced with a decimal number being the number of current repetition (starting with 1). It works in a 

similar way to a parameter of macroinstruction, so it is replaced with its value before the actual 

command is processed and so it can be used to create symbol identifiers containing the number as a 

part of name:  



22 
 

        repeat 16 
                f#% = 1 shl % 
        end repeat 

The above example defines symbols "f1" to "f16" with values being the consecutive powers of two.  

The "repeat" instruction can have additional arguments, separated with commas, each containing a 

name of supplementary parameters specific to this block. Each of the names can be followed by ":" 

character and the expression specifying the base value from which the parameter is going to start 

counting the repetitions. This allows to easily change the previous sample to define the range of symbols 

from "f0" to "f15":  

        repeat 16, i:0 
                f#i = 1 shl i 
        end repeat 

The "%%" is another special parameter that has a value equal to the total number of repetitions 

planned. This parameter is undefined inside the "while" block. The following example uses it to create 

the sequence of bytes with values descending from 255 to 0:  

        repeat 256 
                db %%-% 
        end repeat 

The "break" instruction allows to stop the repeating prematurely. When it is encountered, it causes the 

rest of repeated block to be skipped and no further repetitions to be executed. It can be used to stop 

the repeating if a certain condition is met:  

        s = x/2 
        repeat 100 
                if x/s = s 
                        break 
                end if 
                s = (s+x/s)/2 
        end repeat 

The above sample tries to find the square root of the value of symbol "x", which is assumed defined 

elsewhere. It can easily be rewritten to perform the same task with "while" instead of "repeat":  

        s = x/2 
        while x/s <> s 
                s = (s+x/s)/2 
                if % = 100 
                        break 
                end if 
        end while 

The "iterate" instruction (with a synonym "irp") repeats the block of instructions while iterating through 

the list of values separated with commas. The first argument to "iterate" should be a name of 

parameter, followed by the comma and then a list of values. During each iteration the parameter 

receives one of the values from the list.  

        iterate value, 1,2,3 
                db value 
        end iterate 

Like it is in the case of an argument to macroinstruction, the value of parameter that contains commas 

needs to be enclosed with "<" and ">" characters. It is also possible to enclose the first argument to 



23 
 

"iterate" with "<" and ">", in order to define multiple parameters. The list of values is then divided into 

section containing as many values as there are parameters, and each iteration operates on one such 

section, assigning to each parameter a corresponding value:  

        iterate <name,value>, a,1, b,2, c,3 
                name = value 
        end iterate 

The name of a parameter can also, like in the case of macroinstructions, be followed by "*" to require 

that the parameter has a value that is not empty, or ":" and a default value.  

The "break" instruction plus both the "%" and "%%" parameters can be used inside the "iterate" block 

with the same effects as in case of "repeat".  

The "indx" is an instruction that can be only be used inside the iterated block and it changes the values 

of all the iterated parameters to the ones corresponding to iteration with number specified by the 

argument to "indx" (but when the next iteration is started, the values of parameters are again assigned 

in the normal way). This allows to process the iterated values in a different order. In the following 

example the values are processed from the last to the first:  

        iterate value, 1,2,3 
                indx 1+%%-% 
                db value 
        end iterate 

With "indx" it is even possible to move the view of iterated values many times during the single 

repetition. In the following example the entire processing is done during the first repetition of iterated 

block and then the "break" instruction is used to prevent further iterations:  

        iterate str, 'alpha','beta','gamma' 
                repeat %% 
                        dw offset#% 
                end repeat 
                repeat %% 
                        indx % 
                        offset#% db str 
                end repeat 
                break 
        end iterate 

The parameters defined by "iterate" do not attach the context to iterated values, but neither do they 

remove the original context if such is already attached to the text of arguments. So if the values given to 

"iterate" were themselves created from another parameter that preserved the original context for the 

symbol identifiers (like the parameter of macroinstruction), then this context is preserved, but 

otherwise "iterate" defines just a plain text substitution.  

The parameters defined by instructions like "iterate" or "repeat" are processed everywhere in the text 

of associated block, but with some limitations if the block is defined partly by the text of 

macroinstruction and partly in other places. In that case the parameters are only accessible in the parts 

of the block that are defined in the same place as the initial command.  

Every time a parameter is defined, its name can have the "?" character attached to it to indicate that 

this parameter is case-insensitive. However, when parameters are recognized inside the preprocessed 



24 
 

line, it does not matter whether they are followed by "?" there. The only modifier that is recognized by 

preprocessor when it replaces the parameter with its value is the "`" character.  

The repeating instructions together with "if" belong to the group called control directives. They are the 

instructions that control the flow of assembly. Each of them defines its own block of subordinate 

instructions, closed with corresponding "end" command, and if these blocks are nested within each 

other, it always must be a proper nesting - the inner block must always be closed before the outer one. 

All control directives are therefore unconditional instructions - they are recognized even when they are 

inside an otherwise skipped block.  

The "postpone" is another control directive, which causes the block of instructions to be assembled 

later, when all of the following source text has already been processed.  

        dw final_count 
        postpone 
                final_count = counter 
        end postpone 
        counter = 0 

The above sample postpones the definition of "final_count" symbol until the entire source has been 

processed, so that it can access the final value of "counter" variable.  

The assembly of the source text that follows "postpone" includes the assembly of any additional blocks 

declared with "postpone", therefore if there are multiple such blocks, they are assembled in the reverse 

order. The one that was declared last is assembled first when the end of the source text is reached.  

When the "postpone" directive is provided with an argument consisting of a single "?" character, it tells 

the assembler that the block contains operations which should not affect any of the values defined in 

the main source and thus the assembler may refrain from evaluating them until all other values have 

been successfully resolved. Such blocks are processed even later than the ones declared by "postpone" 

with no arguments. They may be used to perform some finalizing tasks, like the computation of a 

checksum of the assembled code.  

The "irpv" is another repeating instruction and an iterator. It has just two arguments, first being the 

name of parameter and second the identifier of a variable. It iterates through all the stacked values of 

symbolic variable, starting from the oldest one (this applies only to the values defined earlier in the 

source).  

        var equ 1 
        var equ 2 
        var equ 3 
        var reequ 4 
        irpv param, var 
                db param 
        end irpv 

In the above example there are three iterations, with values 1, 2, and 4.  

"irpv" can effectively convert a value of symbolic variable into a parameter, and this can be useful all by 

itself, because the symbolic variable is only evaluated in the expressions inside the arguments of 

instructions (labeled or not), while the parameters are preprocessed in the entire line before any 



25 
 

processing of command is started. This allows, for example, to redefine a regular value that is linked by 

symbolic variable:  

        x = 1 
        var equ x 
        irpv symbol, var 
                indx %% 
                symbol = 2 
                break 
        end irpv 
        assert x = 2 

The combination of "indx" and "break" was added to the above sample to limit the iteration to the latest 

value of symbolic variable. In the next section a better solution to the same problem will be presented.  

When a variable passed to "irpv" has a value that is not symbolic, the parameter is given a text that 

produces the same value upon computation. When the value is a positive number, the parameter is 

replaced with its decimal representation (similarly how the "%" parameter is processed), otherwise the 

parameter is replaced with an identifier of a proxy symbol holding the value from stack.  

12. Matching Parameters 
The "match" is a control directive which causes its block of instructions to be assembled only when the 

text specified by its second argument matches the pattern given by the first one. A text is separated 

from a pattern with a comma character, and it includes everything that follows this separator up to the 

end of line.  

Every special character (except for the "," and "=", which have a specific meaning in the pattern) is 

matched literally - it must be paired with the identical token in the text. In the following example the 

content of the first block is assembled, while the content of the second one is not.  

        match +,+ 
                assert 1        ; positive match 
        end match 
 
        match +,- 
                assert 0        ; negative match 
        end match 

The quoted strings are also matched literally, but name tokens in the pattern are treated differently. 

Names act as a wildcard and can match any sequence of tokens which is not empty. If the match is 

successful, the parameters with such names are created, and each is assigned the value equal to the text 

this wildcard was matched with.  

        match a[b], 100h[3] 
                dw a+b          ; dw 100h+3 
        end match 

A parameter name in pattern can have an extra "?" character attached to it to indicate that it is a case-

insensitive name.  

The "=" character causes the token that follows it to be matched literally. It allows to perform the 

matching of name tokens, and also of the special characters that would otherwise have a different 

meaning, like "," or "=", or "?" following the name.  



26 
 

        match =a==a, a=8 
                db a            ; db 8 
        end match 

If the "=" is followed by name token with "?" character attached to it, this element is matched literally 

but in a case-insensitive way:  

        match =a?==a, A=8 
                db a            ; db 8 
        end match 

When there are many wildcards in the pattern, each consecutive one is matched with as few tokens as 

possible and the last one takes what is left. If the wildcards follow each other without any literally 

matched elements between them, the first one is matched with just a single token, and the second one 

with the remaining text:  

        match car cdr, 1+2+3 
                db car          ; db 1 
                db cdr          ; db +2+3 
        end match 

In the above sample the matched text must contain at least two tokens, because each wildcard needs at 

least one token to be not empty. In the next example there are additional constraints, but the same 

general rules applies and the first wildcard consumes as little as possible:  

        match first:rest, 1+2:3+4:5+6 
                db `first       ; db '1+2' 
                db 13,10 
                db `rest        ; db '3+4:5+6' 
        end match 

While any whitespace next to the wildcards is ignored, the presence or absence of whitespace between 

the literally matched elements is meaningful. If such elements have no whitespace between them, their 

counterparts must contain no whitespace between them either. But if there is a whitespace between 

the elements in pattern, it places no constraints on the use of whitespace in the corresponding text - it 

can be present of not.  

        match ++,++ 
                assert 1        ; positive match 
        end match 
 
        match ++,+ + 
                assert 0        ; negative match 
        end match 
 
        match + +,++ 
                assert 1        ; positive match 
        end match 
 
        match + +,+ + 
                assert 1        ; positive match 
        end match 

The presence of whitespace in the text becomes required when the pattern contains the "=" character 

followed by a whitespace:  

        match += +, ++ 
                assert 0        ; negative match 



27 
 

        end match 
 
        match += +, + + 
                assert 1        ; positive match 
        end match 

 

The "match" command is analogous to "if" in that it allows to use the "else" or "else match" to create a 

selection of blocks from which only one is executed:  

        macro let param 
                match dest+==src, param 
                        dest = dest + src 
                else match dest-==src, param 
                        dest = dest + src 
                else match dest++, param 
                        dest = dest + 1 
                else match dest--, param 
                        dest = dest + 1 
                else match dest==src, param 
                        dest = src 
                else 
                        assert 0 
                end match 
        end macro 
 
        let x=3                 ; x = 3 
        let x+=7                ; x = x + 7 
        let x++                 ; x = x + 1 

It is even possible to mix the "if" and "match" conditions in a sequence of "else" blocks. The entire 

construction must be closed with "end" command corresponding to whichever of the two was used last:  

        macro record text 
                match any, text 
                        recorded equ `text 
                else if RECORD_EMPTY 
                        recorded equ '' 
                end if 
        end macro 

The "match" is able to recognize symbolic variables and before the matching is started, their identifiers 

in the text of the second argument are replaced with corresponding values (just like they are replaced in 

the text that follows the "equ" command):  

        var equ 2+3 

 

        match a+b, var 
                db a xor b 
        end match 

This means that the "match" can be used instead of "irpv" to convert the latest value of a symbolic 

variable to parameter. The sample from the previous section, where "irpv" was used with "break" to 

perform just one iteration on the last value, can be rewritten to use "match" instead:  

        x = 1 
        var equ x 
        match symbol, var 
                symbol = 2 



28 
 

        end match 
        assert x = 2 

The difference between them is that "irpv" would execute its block even for an empty value, while in the 

case of "match" the "else" block would have to be added to handle the empty text.  

When the evaluation of symbolic variables in the matched text is undesirable, the symbol created with 

"define" can be used as a proxy to preserve the text, because the replacement is not recursive:  

        macro drop value 
                local temporary 
                define temporary value 
                match =A, temporary 
                        db A 
                        restore A 
                else 
                        db value 
                end match 
        end macro 
 
        A equ 1 
        A equ 2 
 
        drop A 
        drop A 

A concern could arise that "define" may modify the meaning of text by equipping it with a local context. 

But when the value for "define" comes from the parameter of macroinstruction (as in the above 

sample), it already carries its original context and "define" does not alter it.  

The "rawmatch" directive (with a synonym "rmatch") is very similar to "match", but it operates on the 

raw text of the second argument. Not only it does not evaluate the symbolic variables, but it also strips 

the text of any additional context it could have carried.  

        struc has instruction 
                rawmatch text, instruction 
                        namespace . 
                                text 
                        end namespace 
                end rawmatch 
        end struc 
 
        define x 
        x has a = 3 
        assert x.a = 3 

In the above sample the identifier of "a" would be interpreted in the context effective for the line calling 

the "has" macroinstruction if it was not converted back into the raw text by "rmatch".  

13. Output Areas 
The "org" instruction starts a new area of output. The content of such area is written into the 

destination file next to the previous data, but the addresses in the new area are based on the value 

specified in the argument to "org". The area is closed automatically when the next one is started or 

when the source ends.  

        org 100h 



29 
 

        start:                  ; start = 100h 

The "$" is a built-in symbol of expression class which is always equal to the value of current address. 

Therefore definition of a constant with the value specified by "$" symbol is equivalent to defining a label 

at the same point:  

        org 100h 
        start = $               ; start = 100h 

The "$$" symbol is always equal to the base of current addressing space, so in the area started with 

"org" it has the same value as the base address from the argument of "org". The difference between "$" 

and "$$" is thus the current position relative to the start of the area:  

        org 2000h 
        db 'Hello!' 
        size = $ - $$           ; size = 6 

The "$@" symbol evaluates to the base address of current block of uninitialized data. When there was 

no such data defined just before the current position, this value is equal to "$", otherwise it is equal to 

"$" minus the length of said data inside the current addressing space. Note that reserved data no longer 

counts as such when it is followed by an initialized one.  

The "section" instruction is similar to "org", but it additionally trims all the reserved data that precedes it 

analogously to how the uninitialized data is not written into output when it is at the end of file. The 

"section" can therefore be followed by initialized data definitions without causing the previously 

reserved data to be initialized with zeros and written into output. In this sample only the first of the 

three reserved buffers are actually converted into zeroed data and written into output, because it is 

followed by some initialized data. The second one is trimmed because of the "section", and the third 

one is cut off since it lies at the end of file:  

        data1 dw 1 
        buffer1 rb 10h          ; zeroed and present in the output 
 
        org 400h 
        data dw 2 
        buffer2 rb 20h          ; not in the output 
 
        section 1000h 
        data3 dw 3 
        buffer3 rb 30h          ; not in the output 

The "$%" is a built-in symbol equal to the offset within the output file at which the initialized data would 

be generated if it was defined at this point. The "$%%" symbol is the current offset within the output 

file. These two values differ only when they are used after some data has been reserved - the "$%" is 

then larger than "$%%" by the length of unitialized data which would be generated into output if it was 

to be followed by some initialized one.  

        db 'Hello!' 
        rb 4 
        position = $%%          ; position = 6 
        next = $%               ; next = 10 

The values in the comments of the above sample assume that the source contains no other instructions 

generating output.  



30 
 

The "virtual" creates a special output area which is not written into the main output file. This kind of 

area must reside between the "virtual" and "end virtual" commands, and after it is closed, the output 

generator comes back to the area it was previously operating on, with position and address the same as 

there were just before opening the "virtual" block. This allows also to nest the "virtual" blocks within 

each other.  

When "virtual" has no argument, the base address of this area is the same as current address in the 

outer area. An argument to "virtual" can have a form of "at" keyword followed by an expression defining 

the base address for the enclosed area:  

        int dw 1234h 
        virtual at int 
                low db ? 
                high db ? 
        end virtual 

Instead of or in addition to such argument, "virtual" can also be followed by an "as" keyword and a 

string defining an extension of additional file where the initialized content of the area is going to be 

stored at the end of a successful assembly.  

The "load" instruction defines the value of a variable by loading the string of bytes from the data 

generated in an output area. It should be followed by an identifier of symbol to define, then optionally 

the ":" character and a number of bytes to load, then the "from" keyword and an address of the data to 

load. This address can be specified in two modes. If it is simply a numeric expression, it is an address 

within the current area. In that case the loaded bytes must have already been generated, so it is only 

possible to load from the space between "$$" and "$" addresses.  

        virtual at 100h 
                db 'abc' 
                load b:byte from 101h   ; b = 'b' 
        end virtual 

When the number of bytes is not specified, the length of loaded string is determined by the size 

associated with address.  

The other variant of "load" needs a special kind of label, which is created with "::" instead of ":". Such 

label has a value that cannot be used directly, but it can be used with "load" instruction to access the 

data of the area in which this label has been defined. The address for "load" has then to be specified as 

the area label followed by ":" and then the address within that area:  

        virtual at 0 
                hex_digits:: 
                db '0123456789ABCDEF' 
        end virtual 
        load a:byte from hex_digits:10  ; a = 'A' 

This variant of "load" can access the data which is generated later, even within the current area:  

        area:: 
        db 'abc' 
        load sub:3 from area:$-2        ; sub = 'bcd' 
        db 'def' 

The "store" instruction can modify already generated data in the output area. It should be followed by a 

value (automatically converted to string of bytes), then optionally the ":" character followed by a 



31 
 

number of bytes to write (when this setting is not present, the length of string is determined by the size 

associated with address), then the "at" keyword and the address of data to replace, in one of the same 

two modes as allowed by "load". However, the "store" is not allowed to modify the data that has not 

been generated yet, and any area that has been touched by "store" becomes a variable area, forbidding 

also the "load" to read a data from such area in advance.  

The following example uses the combination of "load" and "store" to encrypt the entire contents of the 

current area with a simple "xor" operation:  

        db "Text" 
        key = 7Bh 
        repeat $-$$ 
                load a : byte from $$+%-1 
                store a xor key : byte at $$+%-1 
        end repeat 

If the final data of an area that has been modified by "store" needs to be read earlier in the source, it 

can be achieved by copying this data into a different area that would not be constrained in such way. 

This is analogous to defining a constant with a final value of some variable:  

        load char from const:0 
 
        virtual 
                var:: 
                db 'abc' 
                .length = $ 
        end virtual 
 
        store 'A' at var:0 
 
        virtual 
                const:: 
                repeat var.length 
                        load a : byte from var:%-1 
                        db a 
                end repeat 
        end virtual 

The area label can be forward-referenced by "load", but it can never be forward-referenced by "store", 

even if it refers to the current output area.  

The "virtual" instruction can have an existing area label as the only argument. This variant allows to 

extend a previously defined and closed block with additional data. The area label must refer to a block 

that was created earlier in the source with "virtual". Any definition of data within an extending block is 

going to have the same effect as if that definition was present in the original "virtual" block.  

        virtual at 0 as 'log' 
                Log:: 
        end virtual 
 
        virtual Log 
                db 'Hello!',13,10 
        end virtual 



32 
 

There is an additional variant of "load" and "store" directives that allows to read and modify already 

generated data in the output file given simply an offset within that output. This variant is recognized 

when the "at" or "from" keyword is followed by ":" character and then the value of an offset.  

        checksum = 0 
        repeat $% 
                load a : byte from : %-1 
                checksum = checksum + a 
        end repeat 

The "restartout" instruction abandons all the output generated up to this point and starts anew with an 

empty one. An optional argument may specify the base address of newly started output area. When 

"restartout" has no argument, the current address is preserved by using it as the base for the new area.  

The "org", "section" and "restartout" instructions cannot be used inside a "virtual" block, they can only 

separate areas that go into the output file.  

14. Other Instructions 
The "include" instruction reads the source text from another file and processes it before proceeding 

further in the current source. Its argument should be a string defining the path to a file (the format of 

the path may depend on the operating system). If after the instruction and before the argument the "!" 

character is added, the other file is read and processed unconditionally, even when it is inside a skipped 

block (the unconditional instructions from the other file may then get recognized).  

        include 'macro.inc' 

The "eval" instruction takes a sequence of bytes defined by its arguments, treats it as a source text and 

assembles it. The arguments are either strings or the numeric values of single bytes, separated with 

commas. In the next example "eval" is used to generate definitions of symbols named as consecutive 

letters of the alphabet:  

        repeat 26 
                eval 'A'+%-1,'=',`% 
        end repeat 
 
        assert B = 2 

The "display" instruction causes a sequence of bytes to be written into standard output, next to the 

messages generated by the assembler. It should be followed by strings or numeric values of single bytes, 

separated with commas. The following example uses "repeat 1" to define a parameter with a decimal 

representation of computed number, and then displays it as a string:  

        macro show description,value 
                repeat 1, d:value 
                        display description,`d,13,10 
                end repeat 
        end macro 
 
        show '2^64=',1 shl 64 

The "err" instruction signalizes an error in the assembly process, with a custom message specified by its 

argument. It allows the same kind of arguments as the "display" directive.  

        if $>10000h 



33 
 

                err 'segment too large' 
        end if 

The "format" directive allows to set up options concerning the output. The only available choice is 

"format binary" followed by the "as" keyword and the string defining an extension for the output file. 

Unless a name of the output file is specified from the command line, it is constructed from the path to 

the main source file by dropping the extension and attaching a new extension if such is defined.  

        format binary as 'com' 

The "format" directive, analogously to "end", uses an identifier that follows it to find an instruction in 

the child namespace of case-insensitive symbol named "format". The only built-in instruction that 

resides in that namespace is the "binary", but additional ones may be defined in form of 

macroinstructions.  

The built-in symbol "%t" has the constant value of the timestamp marking the point in time when the 

assembly was started.  

The "__file__" is a built-in symbol whose value is a string containing the name of currently processed 

source file. The accompanying "__line__" symbol provides the number of currently processed line in 

that file.  

The "outscope" directive is available while any macroinstruction is processed, and it modifies the 

command that follows in the same line. If the command causes any parameters to be defined, they are 

created not in the context of currently processed macroinstruction but in the context of the source text 

that called it.  

        macro match?! statement& 
                display 'match wrapper' 
                outscope match statement 
        end macro 

This allows not only to safely wrap some control directives in macroinstructions, but also to create 

additional customized language constructions that define parameters for a block of text.  

The "retaincomments" directive switches the assembler to treat a semicolon as a regular token and 

therefore not strip comments from lines before processing. This allows to use semicolons in places like 

MATCH pattern.  

        retaincomments 
        macro ? line& 
                match instruction ; comment , line 
                        virtual 
                                comment 
                        end virtual 
                        instruction 
                else 
                        line 
                end match 
        end macro 
 
        var dd ?  ; bvar db ? 

The "isolatelines" directive prevents the assembler from subsequently combining lines read from the 

source text when the line break is preceded by a backslash.  



34 
 

The "removecomments" directive brings back the default behavior of semicolons and the 

"combinelines" directive allows lines from the source text to be combined as usual.  

Copyright © 1999-2018, Tomasz Grysztar.  
Powered by rwasa.  

Table of Contents 

mailto:tgrysztar@flatassembler.net
https://2ton.com.au/rwasa/

